| 1 | POWER SYSTEM PROTECTION AND DEVICE COORDINATION | |----|---| | 2 | ADMINISTRATION | | 3 | GOALS OF COURSE | | 4 | BEFORE WE BEGIN | | 5 | COURSE OVERVIEW | | 6 | PROTECTION VS. COORDINATION VS. POWER QUALITY VS. SAFETY | | 7 | SYSTEM DESIGN APPROACHES IMPACTS | | 8 | WHEN IS A SYSTEM "COORDINATED"? | | 9 | PROTECTIVE DEVICE COORDINATION | | 10 | WHY THE CONCERN ABOUT POWER SYSTEM COORDINATION? | | 11 | FAULTS CANNOT BE ELIMINATED !!! | | 12 | CRITERIA AND RESOURCES | | 13 | FAULT TYPES | | 14 | POWER SYSTEM ANALYSIS NETWORK REDUCTION | | 15 | NETWORK ANALYSIS METHODS | | 16 | PER-UNIT CALCULATION METHODS | | 17 | PER-UNIT FORMULAS AND STEPS | | 18 | PER-UNIT IMPEDANCE CORRECTIONS | | 19 | TRANSFORMER PERCENT IMPEDANCE TESTING | | 20 | IMPORTANCE OF TRANSFORMER IMPEDANCE | | 21 | SYMMETRICAL COMPONENTS | | 22 | IMPORTANCE OF SYMMETRICAL COMPONENTS | | 23 | SYMMETRICAL COMPONENT FORMULAS | | 24 | L-G FAULT SEQUENCE DIAGRAMS | | 25 | L-G FAULT SEQUENCE DIAGRAMS | | 26 | WYE-WYE TRANSFORMERS, SYMMETRICAL COMPONENTS, AND GROUND FAULT PROTECTION | | 27 | DELTA-WYE TRANSFORMERS, SYMMETRICAL COMPONENTS, AND GROUND FAULT PROTECTION | | 28 | GROUND FAULTS | | 29 | GROUND FAULT CURRENT MAGNITUDES | | 30 | ARCING GROUND FAULT MAGNITUDES | | 31 | ARCING GROUND FAULT PROBABILITIES | | 32 | GROUND FAULT PROTECTION OF MEDIUM VOLTAGE SYSTEMS | | 33 | FAULT CURRENTS NEEDED FOR STUDY | | 34 | CIRCUIT BREAKER RATINGS | | 35 | DISTRIBUTION FUSE INTERUPTING RATINGS | | 36 | BREAKER AND FUSE TESTING AND RATINGS | | 37 | RREAKER AND FUSE DERATING | | 38 ANSI BREAKER CALCULATIONS | |--| | 39 MCCB BREAKER DERATING EXAMPLE | | 40 COORDINATION GRAPHICAL TOOLS | | 41 RELAY TIME/CURRENT CURVE – DEFINITE TIME | | 42 RELAY TIME/CURRENT CURVE - INSTANTANEOUS | | 43 RELAY INVERSE TIME/OVERCURRENT CURVES | | 44 COORDINATION USING LOG-LOG PLOTS | | 45 GENERAL CURVE INTERPRETATION | | 46 PLOTTING VOLTAGES | | 47 DELTA-WYE TRANSFORMER CONNECTION EFFECT ON TCC PLOTTING | | 48 PLOTTING DELTA-WYE SYSTEM TIPS | | 49 DELTA-WYE SYSTEMS EFFECT ON TIME-CURRENT PLOTS | | 50 NON-CURRENT LIMITING MCCB TIME/CURRENT CURVE | | 51 DIGITAL or SOLID-STATE TRIP LOW VOLTAGE BREAKERS | | 52 STANDARD FUSE TIME/CURRENT CURVE | | 53 LOW VOLTAGE CURRENT LIMITING FUSE CURVE | | 54 FUSED CUTOUT LINK CHARACTERISTICS | | 55 MEDIUM VOLTAGE POWER FUSE CHARACTERISTICS | | 56 INVERSE TIME/OVERCURRENT PROTECTIVE RELAYS | | 57 INVERSE RELAY CURVE COMPARISONS | | 58 EXTREMELY INVERSE CURVE RELAY | | 59 CURRENT LIMITING FUSE RATIOS ACHIEVE COORDINATION | | 60 MOLDED CASE BREAKER - MINIMUM RATIOS | | 61 EFFECTS OF FAULT CURRENT MAGNITUDE ON COORDINATION | | 62 TIME DIVISION | | 63 INFINITE BUS VS. REAL WORLD - SYSTEM | | 64 INFINITE BUS VS. REAL WORLD – FAULT CURRENTS | | 65 INFINITE BUS VS. REAL WORLD – 1-MILE OUT | | 66 INFINITE BUS VS. REAL WORLD – 10 –MILES OUT | | 67 EXAMPLE COORDINATION PROBLEM | | 68 EXAMPLE PROBLEM - PROTECTION | | 69 EXAMPLE PROBLEM - COORDINATION | | 70 EXAMPLE PROBLEM – COORDINATION | | 71 EQUIPMENT DAMAGE CHARACTERISTICS | | 72 I²t vs. EQUIPMENT PROTECTION | | 73 I²t ASSUMPTIONS | | 74 C. L. FUSE PERFORMANCE PEAK CURRENT LET-THROUGH CHART | | 75 CURRENT-LIMITING FUSE MISCONCEPTIONS | | 13 CONNEIS I - LIIVII I IING FOSE IVIISCONCEP I IONS | | 76 | SHORT CIRCUIT CURRENT RATING (SCCR) | |------|---| | 77 | CURRENT-LIMITING FUSE PROTECTION OF BREAKERS | | 78 | CURRENT LIMITING MCCB PRINCIPLES | | 79 | CURRENT LIMITING MCCB TIME/CURRENT CURVE | | 80 | CURRENT LIMITING MCCB LET-THRU CURVES | | 81 | MCCB COORDINATION-Example 1 | | 82 | MCCB COORDINATION-Example 2 | | 83 🔲 | SHORT TIME CURRENT CABLE DAMAGE CHARACTERISTICS | | 84 | INSULATED CABLE DAMAGE CURVES BEYOND 10 SECONDS | | 85 | CABLE PROTECTION | | 86 | CABLE PROTECTION – POWER CIRCUIT BREAKERS | | 87 | PARALLELED CONDUCTOR SHORT CIRCUIT PROTECTION | | 88 | SUBSTATION GROUND GRID PROTECTION | | 89 | NEC EQUIPMENT GROUNDING PROTECTION | | 90 | EQUIPMENT GROUND PROTECTION | | 91 | MEDIUM VOLTAGE SHIELD DAMAGE | | 92 | SHIELD PROTECTION – SOLIDLY GROUNDED SYSTEM | | 93 | SHIELD PROTECTION – RESISTIVELY GROUNDED SYSTEM | | 94 | OVERHEAD CONDUCTOR PROTECTION | | 95 | OVERHEAD LINE CONDUCTOR CHARACTERISTICS | | 96 | MOTOR PROTECTION | | 97 | MOTOR OVERLOAD RELAYS | | 98 | MOTOR PROTECTION ANALYSIS | | 99 | TRANSFORMER PROTECTION | | 100 | TRANSFORMER THERMAL DAMAGE CURVES | | 101 | COMMON TRANSFORMER PROTECTION | | 102 | TRANSFORMER PROTECTION & COORDINATION -SECONDARY FAULTS | | 103 | DIFFERENTIAL TRANSFORMER PROTECTION | | 104 | NEMA BUSBAR DAMAGE CURVES | | 105 | BUSWAY DAMAGE | | 106 | GENERATOR PROTECTION | | 107 | GENERATOR SHORT CIRCUIT CHARACTERISTICS VS. EXCITATION SUPPORT METHOD | | 108 | GENERAL GENERATOR PROTECTION PROBLEMS | | 109 | GENERATOR OVERCURRENT PROTECTION | | 110 | GENERATOR RELAYING FOR FAULT CURRENTS | | 11 | ENHANCED GENERATOR PROTECTION | | 12 | COORDINATION TIME INTERVALS | | 113 | FACTORS INFLUENCING COORDINATION TIME INTERVALS | | 114 APPLYING COORDINATION TIME INTERVALS | |---| | 115 INSTANTANEOUS TRIP DEVICES | | 116 INSTANTANEOUS RELAY PROTECTION ZONES | | 117 COORDINATING INSTANTANEOUS TRIP ICCB OR MCCB BREAKERS | | 118 INSTANTANEOUS TRIP vs TRANSFORMER INRUSH | | 119 TRANSFORMER INRUSH CONSIDERATIONS | | 120 CASE STUDY: TRANSFORMER INRUSH vs THERMAL-MAGNETIC MCCB TRIPPING CURRENTS | | 121 CASE STUDY: TRANSFORMER INRUSH VS MCCB INSTANTANEOUS TRIPPING CHARACTERISTICS | | 122 SERIES-RATED BREAKERS | | 123 SERIES-RATED BREAKERS VS. COORDINATION | | 124 INSTANTANEOUS TRIP RELAYS | | 125 RECLOSING RELAYS AND RECLOSERS | | 126 FEEDER RECLOSING RELAY EXAMPLE | | 127 RECLOSER AND FUSE COORDINATION | | 128 RECLOSING RELAYS WITH SECTIONALIZER | | 129 ASYMMETRICAL CURRENT IMPACTS | | 130 ASYMMETRY FACTORS AND HOW THEY AFFECT SYSTEM COORDINATION | | 131 CURRENT LIMITING FUSES AND NON-CURRENT LIMITING BREAKERS | | 132 COORDINATION USING CURRENT LIMITING FUSE LET-THROUGH CURVES | | 133 LOAD FLOW EFFECTS | | 134 COLD LOAD PICKUP | | 135 COLD LOAD PICKUP | | 136 COLD LOAD PICKUP | | 137 UTILITY SYSTEM FUSING PHILOSOPHIES | | 138 DIFFERENTIAL RELAYS | | 139 BUS DIFFERENTIAL C.T. SELECTION | | 140 O 600 V SYSTEM GROUND FAULT PROTECTION | | 141 3 – C.T. RESIDUAL RELAY SCHEME | | 142 4- C.T. RESIDUAL RELAY SCHEME | | 143 1 - C.T. GROUND FAULT DETECTION SCHEME | | 144 1 – C.T. GROUND FAULT DETECTION SYSTEM NEUTRAL SCHEME | | 145 GROUND FAULT PROTECTION SENSITIVITY | | 146 C EXAMPLE PROBLEM GROUND FAULT PROTECTION | | 147 C EXAMPLE PROBLEM GROUND FAULT PROTECTION | | 148 EXAMPLE PROBLEM GROUND FAULT PROTECTION | | 149 7ONE INTERLOCKING GROUND FAULT PROTECTION | | 150 🔲 | DELTA-WYE TRANSFORMER EFFECTS ON 3-PH & GROUND FAULT CURRENTS | |-------|---| | 151 | 3-ph FAULT CONTROL WITH TRANSFORMERS | | 152 | GROUND FAULT CONTROL WITHOUT TRANSFORMERS | | 153 | GROUND FAULT CONTROL WITH TRANSFORMERS | | 154 | CURRENT TRANSFORMERS | | 155 | CURRENT TRANSFORMER LIMITATIONS | | 156 | CT BURDEN CALCULATIONS | | 157 | CT SATURATION EFFECTS – DIGITAL RELAYS | | 158 | ELECTROMAGNETIC TRANSFER SWITCHES | | 159 | CONTACTOR TYPE TRANSFER SWITCHES | | 160 | STATIC TRANSFER SWITCHES (STS) | | 161 | CIRCUIT BREAKER TYPE TRANSFER SWITCHES | | 162 | MOLDED CASE SWITCH RATING | | 163 | WEAK SOURCE SYSTEMS | | 164 | UNINTERRUPTIBLE POWER SUPPLIES (UPS) | | 165 | UPS MODES OF OPERATION | | 166 | UPS MODE MODELS | | 167 | 1/2 CYCLE UPS AND STS vs. BREAKER CHARACTERISTICS | | 168 | SHORT TIME UPS AND STS vs. BREAKER CHARACTERISTICS | | 169 | UPS SYSTEM DESIGN | | 170 | TYPICAL UPS SYSTEM DESIGN | | 171 | DISTRIBUTED UPS COMPARISONS | | 172 | COMMON GENERATOR EMERGENCY CIRCUIT DESIGN | | 173 | COMMON GENERATOR EMERGENCY CIRCUIT DESIGN | | 174 | LOAD LUMPING IMPACTS OF EMERGENCY CIRCUIT DESIGN | | 175 | LOAD LUMPED EMERGENCY CIRCUIT ANALYSIS | | 176 | LOAD LUMPED EMERGENCY CIRCUIT ANALYSIS | | 177 | IMPROVING THE EMERGENCY SYSTEM DESIGN | | 178 | EMERGENCY GENERATOR AS SOURCE | | 179 | COORDINATION FACTORS TO CONSIDER DURING INITIAL SYSTEM DESIGN | | 180 | NFPA 70 , NATIONAL ELECTRICAL CODE | | 181 | NEC: SYSTEM COORDINATION REQUIREMENTS | | 182 | NEC Article 110 | | 183 | ARC FLASH/ARC BLAST PROTECTION | | 184 | ELECTRICAL ARC HAZARDS | | 185 | ARC FLASH PROTECTION | | 186 | ARC FLASH HAZARD CALCULATIONS | | 187 | ARC FLASH - ENERGY IN ARC (NFPA 70E) | | 188 | FLASH PROTECTION BOUNDARY | |--------------------------|---| | 189 | CLEARING TIME VS. HAZARD LEVELS | | 190 | ARC DURATION CONTROL | | 191 | ARC FLASH VS. DEVICE SETTINGS | | 192 | INSTANTANEOUS TRIP SETTINGS FOR ARC FLASH DETECTION | | 193 | REDUCING ARC FLASH HAZARDS | | 194 | EXCESSIVE ARC FLASH HAZARD BY DESIGN | | 195 | ARC FLASH STUDY ISSUES | | 196 | ARC BLAST PRESSURES | | 197 | ARC BLAST EQUIPMENT RATINGS | | 198 | IEEE C37.20.7 ARC BLAST TESTING | | 199 | ARC RESISTANT EQUIPMENT IMPACT TO DEVICE COORDINATION | | 200 | NEC ARTICLE 240 – OVERCURRENT PROTECTION | | 201 | NEC Article 240 | | 202 | NEC Article 240 | | 203 | NEC Articles 430 and 450 | | 204 | UL 489 BREAKER TESTING | | 205 | NEC ARTICLE 215 AND 230 | | 206 | NEC ARTICLE 215 AND 230 ARCING GROUND FAULT DAMAGE POINT ANALYSIS | | 207 | NATIONAL ELECTRICAL SAFETY CODE (NESC) | | 208 | NESC: SYSTEM COORDINATION REQUIREMENTS | | 209 | NATIONAL ELECTRICAL SAFETY CODE (NESC) | | 210 | NESC RULE 93-C | | 211 | NESC RULE 93-C, 1/5 TH RULE ANALYSIS | | 212 | NESC – SECTION 16 | | 213 | NESC – SECTION 23 | | 214 | | | 215 | NESC – SECTION 33 | | | NESC – SECTION 33
LUMPED LOADS | | 216 | | | | LUMPED LOADS BETTER DESIGN | | 217 | LUMPED LOADS BETTER DESIGN (MINIMIZING LUMPED LOADS) | | 217 | LUMPED LOADS BETTER DESIGN (MINIMIZING LUMPED LOADS) AVOIDING LOAD LUMPING IN CRITICAL SYSTEMS | | 217
218
219 | LUMPED LOADS BETTER DESIGN (MINIMIZING LUMPED LOADS) AVOIDING LOAD LUMPING IN CRITICAL SYSTEMS COMMON COORDINATION ERRORS AND MISCONCEPTIONS | | 217
218
219
220 | LUMPED LOADS BETTER DESIGN (MINIMIZING LUMPED LOADS) AVOIDING LOAD LUMPING IN CRITICAL SYSTEMS COMMON COORDINATION ERRORS AND MISCONCEPTIONS COMMON COORDINATION ERRORS AND MISCONCEPTIONS | | 217 | LUMPED LOADS BETTER DESIGN (MINIMIZING LUMPED LOADS) AVOIDING LOAD LUMPING IN CRITICAL SYSTEMS COMMON COORDINATION ERRORS AND MISCONCEPTIONS COMMON COORDINATION ERRORS AND MISCONCEPTIONS COMMON COORDINATION ERRORS AND MISCONCEPTIONS | | 217 | LUMPED LOADS BETTER DESIGN (MINIMIZING LUMPED LOADS) AVOIDING LOAD LUMPING IN CRITICAL SYSTEMS COMMON COORDINATION ERRORS AND MISCONCEPTIONS | | 217 | LUMPED LOADS BETTER DESIGN (MINIMIZING LUMPED LOADS) AVOIDING LOAD LUMPING IN CRITICAL SYSTEMS COMMON COORDINATION ERRORS AND MISCONCEPTIONS SPECIFICATION WRITING | | 226 D | ESIGNING FOR COORDINATION – NORMAL SYSTEM | |--------------|---| | 227 D | ESIGNING FOR COORDINATION – NORMAL SYSTEM | | 228 D | ESIGNING EMERGENCY GENERATOR SYSTEMS FOR COORDINATION | | 229 D | ESIGNING EMERGENCY GENERATOR SYSTEMS FOR COORDINATION | | 230 D | ESIGNING UPS SYSTEMS FOR COORDINATION | | 231 C | OSTS OF SYSTEM COORDINATION | | 232 B | ASIC STEPS OF A COORDINATION STUDY | | 233 PI | LOT DEVICES AND SELECT SETTINGS OR RATINGS | | 234 H | ANDLING SYSTEMS THAT CANNOT BE COORDINATED | | 235 🗌 🕻 | OURSE SUMMARY | | 236 St | UMMARY | | 237 SC | OME LESSONS LEARNED | | 238 S | AMPLE PROBLEMS AND LAB RESULTS SESSION | | 239 TI | HANK YOU | | 240 🔲 RI | EFERENCES |