1	POWER SYSTEM PROTECTION AND DEVICE COORDINATION
2	ADMINISTRATION
3	GOALS OF COURSE
4	BEFORE WE BEGIN
5	COURSE OVERVIEW
6	PROTECTION VS. COORDINATION VS. POWER QUALITY VS. SAFETY
7	SYSTEM DESIGN APPROACHES IMPACTS
8	WHEN IS A SYSTEM "COORDINATED"?
9	PROTECTIVE DEVICE COORDINATION
10	WHY THE CONCERN ABOUT POWER SYSTEM COORDINATION?
11	FAULTS CANNOT BE ELIMINATED !!!
12	CRITERIA AND RESOURCES
13	FAULT TYPES
14	POWER SYSTEM ANALYSIS NETWORK REDUCTION
15	NETWORK ANALYSIS METHODS
16	PER-UNIT CALCULATION METHODS
17	PER-UNIT FORMULAS AND STEPS
18	PER-UNIT IMPEDANCE CORRECTIONS
19	TRANSFORMER PERCENT IMPEDANCE TESTING
20	IMPORTANCE OF TRANSFORMER IMPEDANCE
21	SYMMETRICAL COMPONENTS
22	IMPORTANCE OF SYMMETRICAL COMPONENTS
23	SYMMETRICAL COMPONENT FORMULAS
24	L-G FAULT SEQUENCE DIAGRAMS
25	L-G FAULT SEQUENCE DIAGRAMS
26	WYE-WYE TRANSFORMERS, SYMMETRICAL COMPONENTS, AND GROUND FAULT PROTECTION
27	DELTA-WYE TRANSFORMERS, SYMMETRICAL COMPONENTS, AND GROUND FAULT PROTECTION
28	GROUND FAULTS
29	GROUND FAULT CURRENT MAGNITUDES
30	ARCING GROUND FAULT MAGNITUDES
31	ARCING GROUND FAULT PROBABILITIES
32	GROUND FAULT PROTECTION OF MEDIUM VOLTAGE SYSTEMS
33	FAULT CURRENTS NEEDED FOR STUDY
34	CIRCUIT BREAKER RATINGS
35	DISTRIBUTION FUSE INTERUPTING RATINGS
36	BREAKER AND FUSE TESTING AND RATINGS
37	RREAKER AND FUSE DERATING

38 ANSI BREAKER CALCULATIONS
39 MCCB BREAKER DERATING EXAMPLE
40 COORDINATION GRAPHICAL TOOLS
41 RELAY TIME/CURRENT CURVE – DEFINITE TIME
42 RELAY TIME/CURRENT CURVE - INSTANTANEOUS
43 RELAY INVERSE TIME/OVERCURRENT CURVES
44 COORDINATION USING LOG-LOG PLOTS
45 GENERAL CURVE INTERPRETATION
46 PLOTTING VOLTAGES
47 DELTA-WYE TRANSFORMER CONNECTION EFFECT ON TCC PLOTTING
48 PLOTTING DELTA-WYE SYSTEM TIPS
49 DELTA-WYE SYSTEMS EFFECT ON TIME-CURRENT PLOTS
50 NON-CURRENT LIMITING MCCB TIME/CURRENT CURVE
51 DIGITAL or SOLID-STATE TRIP LOW VOLTAGE BREAKERS
52 STANDARD FUSE TIME/CURRENT CURVE
53 LOW VOLTAGE CURRENT LIMITING FUSE CURVE
54 FUSED CUTOUT LINK CHARACTERISTICS
55 MEDIUM VOLTAGE POWER FUSE CHARACTERISTICS
56 INVERSE TIME/OVERCURRENT PROTECTIVE RELAYS
57 INVERSE RELAY CURVE COMPARISONS
58 EXTREMELY INVERSE CURVE RELAY
59 CURRENT LIMITING FUSE RATIOS ACHIEVE COORDINATION
60 MOLDED CASE BREAKER - MINIMUM RATIOS
61 EFFECTS OF FAULT CURRENT MAGNITUDE ON COORDINATION
62 TIME DIVISION
63 INFINITE BUS VS. REAL WORLD - SYSTEM
64 INFINITE BUS VS. REAL WORLD – FAULT CURRENTS
65 INFINITE BUS VS. REAL WORLD – 1-MILE OUT
66 INFINITE BUS VS. REAL WORLD – 10 –MILES OUT
67 EXAMPLE COORDINATION PROBLEM
68 EXAMPLE PROBLEM - PROTECTION
69 EXAMPLE PROBLEM - COORDINATION
70 EXAMPLE PROBLEM – COORDINATION
71 EQUIPMENT DAMAGE CHARACTERISTICS
72 I²t vs. EQUIPMENT PROTECTION
73 I²t ASSUMPTIONS
74 C. L. FUSE PERFORMANCE PEAK CURRENT LET-THROUGH CHART
75 CURRENT-LIMITING FUSE MISCONCEPTIONS
13 CONNEIS I - LIIVII I IING FOSE IVIISCONCEP I IONS

76	SHORT CIRCUIT CURRENT RATING (SCCR)
77	CURRENT-LIMITING FUSE PROTECTION OF BREAKERS
78	CURRENT LIMITING MCCB PRINCIPLES
79	CURRENT LIMITING MCCB TIME/CURRENT CURVE
80	CURRENT LIMITING MCCB LET-THRU CURVES
81	MCCB COORDINATION-Example 1
82	MCCB COORDINATION-Example 2
83 🔲	SHORT TIME CURRENT CABLE DAMAGE CHARACTERISTICS
84	INSULATED CABLE DAMAGE CURVES BEYOND 10 SECONDS
85	CABLE PROTECTION
86	CABLE PROTECTION – POWER CIRCUIT BREAKERS
87	PARALLELED CONDUCTOR SHORT CIRCUIT PROTECTION
88	SUBSTATION GROUND GRID PROTECTION
89	NEC EQUIPMENT GROUNDING PROTECTION
90	EQUIPMENT GROUND PROTECTION
91	MEDIUM VOLTAGE SHIELD DAMAGE
92	SHIELD PROTECTION – SOLIDLY GROUNDED SYSTEM
93	SHIELD PROTECTION – RESISTIVELY GROUNDED SYSTEM
94	OVERHEAD CONDUCTOR PROTECTION
95	OVERHEAD LINE CONDUCTOR CHARACTERISTICS
96	MOTOR PROTECTION
97	MOTOR OVERLOAD RELAYS
98	MOTOR PROTECTION ANALYSIS
99	TRANSFORMER PROTECTION
100	TRANSFORMER THERMAL DAMAGE CURVES
101	COMMON TRANSFORMER PROTECTION
102	TRANSFORMER PROTECTION & COORDINATION -SECONDARY FAULTS
103	DIFFERENTIAL TRANSFORMER PROTECTION
104	NEMA BUSBAR DAMAGE CURVES
105	BUSWAY DAMAGE
106	GENERATOR PROTECTION
107	GENERATOR SHORT CIRCUIT CHARACTERISTICS VS. EXCITATION SUPPORT METHOD
108	GENERAL GENERATOR PROTECTION PROBLEMS
109	GENERATOR OVERCURRENT PROTECTION
110	GENERATOR RELAYING FOR FAULT CURRENTS
11	ENHANCED GENERATOR PROTECTION
12	COORDINATION TIME INTERVALS
113	FACTORS INFLUENCING COORDINATION TIME INTERVALS

114 APPLYING COORDINATION TIME INTERVALS
115 INSTANTANEOUS TRIP DEVICES
116 INSTANTANEOUS RELAY PROTECTION ZONES
117 COORDINATING INSTANTANEOUS TRIP ICCB OR MCCB BREAKERS
118 INSTANTANEOUS TRIP vs TRANSFORMER INRUSH
119 TRANSFORMER INRUSH CONSIDERATIONS
120 CASE STUDY: TRANSFORMER INRUSH vs THERMAL-MAGNETIC MCCB TRIPPING CURRENTS
121 CASE STUDY: TRANSFORMER INRUSH VS MCCB INSTANTANEOUS TRIPPING CHARACTERISTICS
122 SERIES-RATED BREAKERS
123 SERIES-RATED BREAKERS VS. COORDINATION
124 INSTANTANEOUS TRIP RELAYS
125 RECLOSING RELAYS AND RECLOSERS
126 FEEDER RECLOSING RELAY EXAMPLE
127 RECLOSER AND FUSE COORDINATION
128 RECLOSING RELAYS WITH SECTIONALIZER
129 ASYMMETRICAL CURRENT IMPACTS
130 ASYMMETRY FACTORS AND HOW THEY AFFECT SYSTEM COORDINATION
131 CURRENT LIMITING FUSES AND NON-CURRENT LIMITING BREAKERS
132 COORDINATION USING CURRENT LIMITING FUSE LET-THROUGH CURVES
133 LOAD FLOW EFFECTS
134 COLD LOAD PICKUP
135 COLD LOAD PICKUP
136 COLD LOAD PICKUP
137 UTILITY SYSTEM FUSING PHILOSOPHIES
138 DIFFERENTIAL RELAYS
139 BUS DIFFERENTIAL C.T. SELECTION
140 O 600 V SYSTEM GROUND FAULT PROTECTION
141 3 – C.T. RESIDUAL RELAY SCHEME
142 4- C.T. RESIDUAL RELAY SCHEME
143 1 - C.T. GROUND FAULT DETECTION SCHEME
144 1 – C.T. GROUND FAULT DETECTION SYSTEM NEUTRAL SCHEME
145 GROUND FAULT PROTECTION SENSITIVITY
146 C EXAMPLE PROBLEM GROUND FAULT PROTECTION
147 C EXAMPLE PROBLEM GROUND FAULT PROTECTION
148 EXAMPLE PROBLEM GROUND FAULT PROTECTION
149 7ONE INTERLOCKING GROUND FAULT PROTECTION

150 🔲	DELTA-WYE TRANSFORMER EFFECTS ON 3-PH & GROUND FAULT CURRENTS
151	3-ph FAULT CONTROL WITH TRANSFORMERS
152	GROUND FAULT CONTROL WITHOUT TRANSFORMERS
153	GROUND FAULT CONTROL WITH TRANSFORMERS
154	CURRENT TRANSFORMERS
155	CURRENT TRANSFORMER LIMITATIONS
156	CT BURDEN CALCULATIONS
157	CT SATURATION EFFECTS – DIGITAL RELAYS
158	ELECTROMAGNETIC TRANSFER SWITCHES
159	CONTACTOR TYPE TRANSFER SWITCHES
160	STATIC TRANSFER SWITCHES (STS)
161	CIRCUIT BREAKER TYPE TRANSFER SWITCHES
162	MOLDED CASE SWITCH RATING
163	WEAK SOURCE SYSTEMS
164	UNINTERRUPTIBLE POWER SUPPLIES (UPS)
165	UPS MODES OF OPERATION
166	UPS MODE MODELS
167	1/2 CYCLE UPS AND STS vs. BREAKER CHARACTERISTICS
168	SHORT TIME UPS AND STS vs. BREAKER CHARACTERISTICS
169	UPS SYSTEM DESIGN
170	TYPICAL UPS SYSTEM DESIGN
171	DISTRIBUTED UPS COMPARISONS
172	COMMON GENERATOR EMERGENCY CIRCUIT DESIGN
173	COMMON GENERATOR EMERGENCY CIRCUIT DESIGN
174	LOAD LUMPING IMPACTS OF EMERGENCY CIRCUIT DESIGN
175	LOAD LUMPED EMERGENCY CIRCUIT ANALYSIS
176	LOAD LUMPED EMERGENCY CIRCUIT ANALYSIS
177	IMPROVING THE EMERGENCY SYSTEM DESIGN
178	EMERGENCY GENERATOR AS SOURCE
179	COORDINATION FACTORS TO CONSIDER DURING INITIAL SYSTEM DESIGN
180	NFPA 70 , NATIONAL ELECTRICAL CODE
181	NEC: SYSTEM COORDINATION REQUIREMENTS
182	NEC Article 110
183	ARC FLASH/ARC BLAST PROTECTION
184	ELECTRICAL ARC HAZARDS
185	ARC FLASH PROTECTION
186	ARC FLASH HAZARD CALCULATIONS
187	ARC FLASH - ENERGY IN ARC (NFPA 70E)

188	FLASH PROTECTION BOUNDARY
189	CLEARING TIME VS. HAZARD LEVELS
190	ARC DURATION CONTROL
191	ARC FLASH VS. DEVICE SETTINGS
192	INSTANTANEOUS TRIP SETTINGS FOR ARC FLASH DETECTION
193	REDUCING ARC FLASH HAZARDS
194	EXCESSIVE ARC FLASH HAZARD BY DESIGN
195	ARC FLASH STUDY ISSUES
196	ARC BLAST PRESSURES
197	ARC BLAST EQUIPMENT RATINGS
198	IEEE C37.20.7 ARC BLAST TESTING
199	ARC RESISTANT EQUIPMENT IMPACT TO DEVICE COORDINATION
200	NEC ARTICLE 240 – OVERCURRENT PROTECTION
201	NEC Article 240
202	NEC Article 240
203	NEC Articles 430 and 450
204	UL 489 BREAKER TESTING
205	NEC ARTICLE 215 AND 230
206	NEC ARTICLE 215 AND 230 ARCING GROUND FAULT DAMAGE POINT ANALYSIS
207	NATIONAL ELECTRICAL SAFETY CODE (NESC)
208	NESC: SYSTEM COORDINATION REQUIREMENTS
209	NATIONAL ELECTRICAL SAFETY CODE (NESC)
210	NESC RULE 93-C
211	NESC RULE 93-C, 1/5 TH RULE ANALYSIS
212	NESC – SECTION 16
213	NESC – SECTION 23
214	
215	NESC – SECTION 33
	NESC – SECTION 33 LUMPED LOADS
216	
	LUMPED LOADS BETTER DESIGN
217	LUMPED LOADS BETTER DESIGN (MINIMIZING LUMPED LOADS)
217	LUMPED LOADS BETTER DESIGN (MINIMIZING LUMPED LOADS) AVOIDING LOAD LUMPING IN CRITICAL SYSTEMS
217 218 219	LUMPED LOADS BETTER DESIGN (MINIMIZING LUMPED LOADS) AVOIDING LOAD LUMPING IN CRITICAL SYSTEMS COMMON COORDINATION ERRORS AND MISCONCEPTIONS
217 218 219 220	LUMPED LOADS BETTER DESIGN (MINIMIZING LUMPED LOADS) AVOIDING LOAD LUMPING IN CRITICAL SYSTEMS COMMON COORDINATION ERRORS AND MISCONCEPTIONS COMMON COORDINATION ERRORS AND MISCONCEPTIONS
217	LUMPED LOADS BETTER DESIGN (MINIMIZING LUMPED LOADS) AVOIDING LOAD LUMPING IN CRITICAL SYSTEMS COMMON COORDINATION ERRORS AND MISCONCEPTIONS COMMON COORDINATION ERRORS AND MISCONCEPTIONS COMMON COORDINATION ERRORS AND MISCONCEPTIONS
217	LUMPED LOADS BETTER DESIGN (MINIMIZING LUMPED LOADS) AVOIDING LOAD LUMPING IN CRITICAL SYSTEMS COMMON COORDINATION ERRORS AND MISCONCEPTIONS
217	LUMPED LOADS BETTER DESIGN (MINIMIZING LUMPED LOADS) AVOIDING LOAD LUMPING IN CRITICAL SYSTEMS COMMON COORDINATION ERRORS AND MISCONCEPTIONS SPECIFICATION WRITING

226 D	ESIGNING FOR COORDINATION – NORMAL SYSTEM
227 D	ESIGNING FOR COORDINATION – NORMAL SYSTEM
228 D	ESIGNING EMERGENCY GENERATOR SYSTEMS FOR COORDINATION
229 D	ESIGNING EMERGENCY GENERATOR SYSTEMS FOR COORDINATION
230 D	ESIGNING UPS SYSTEMS FOR COORDINATION
231 C	OSTS OF SYSTEM COORDINATION
232 B	ASIC STEPS OF A COORDINATION STUDY
233 PI	LOT DEVICES AND SELECT SETTINGS OR RATINGS
234 H	ANDLING SYSTEMS THAT CANNOT BE COORDINATED
235 🗌 🕻	OURSE SUMMARY
236 St	UMMARY
237 SC	OME LESSONS LEARNED
238 S	AMPLE PROBLEMS AND LAB RESULTS SESSION
239 TI	HANK YOU
240 🔲 RI	EFERENCES